-
●非對稱異性隧道聯(lián)絡(luò)通道冷凍法(07月24日)
-
●水泥夯土材料抗壓強(qiáng)度試驗(yàn)及耐(08月25日)
-
●變質(zhì)巖類順層邊坡破裂跡象及邊(07月25日)
-
●大體積混凝土配合比優(yōu)化設(shè)計(jì)在(08月25日)
-
●粉煤灰基超高性能混凝土配合比(07月25日)
-
●地鐵車輛段檢修庫裝配式混凝土(07月24日)
-
●變坡面淺埋偏壓小凈距隧道圍巖(07月24日)
-
●大型十字交叉地鐵車站結(jié)構(gòu)地震(07月25日)
-
●邯鄲富水地層深基坑支護(hù)優(yōu)化和(07月25日)
-
●自密實(shí)抑溫防水復(fù)合材料在地下(08月25日)
-
●地鐵盾構(gòu)隧道水泥基同步注漿減(11月05日)
-
●基于模糊貝葉斯網(wǎng)絡(luò)裝配式施工(11月05日)
-
●粉煤灰摻量對高層建筑筏板基礎(chǔ)(06月26日)
-
●基于遺傳算法的神經(jīng)網(wǎng)絡(luò)對大體(06月27日)
-
●氯鹽漬土無側(cè)限抗壓強(qiáng)度及體變(06月25日)
-
●不同 ZrO2 摻量改性水(06月26日)
-
●堿激發(fā)粉煤灰-高爐礦渣粉固化(09月11日)
-
●非均勻銹蝕對建筑鋼混組合梁承(06月27日)
-
●再生微粉泡沫混凝土力學(xué)性能研(06月25日)
-
●基于改進(jìn) GRO-GWO 算(11月05日)
PDF全文閱讀
馬耀華
( 中化學(xué)建設(shè)投資集團(tuán)有限公司 ,北京 102300)
摘 要:為合理實(shí)現(xiàn)運(yùn)營橋梁的安全性預(yù)警分級,結(jié)合去噪處理的實(shí)測數(shù)據(jù),以累計(jì)變形序列、速率序列和加速度序列分別構(gòu)建相應(yīng)的預(yù)警判據(jù),實(shí)現(xiàn)運(yùn)營橋梁安全性預(yù)警分級的多源信息融合,充分保證分級結(jié)果的準(zhǔn)確性。結(jié)果表明:PSO - DVMD 模型可有效剔除橋梁變形數(shù)據(jù)中的隨機(jī)噪聲,適用于橋梁變形數(shù)據(jù)的去噪處理;不同監(jiān)測點(diǎn)或監(jiān)測項(xiàng)目在不同判據(jù)條件下的預(yù)警等級存在一定差異,按不利原則綜合確定橋梁的安全性預(yù) 警等級。運(yùn)營橋梁安全預(yù)警分級為運(yùn)營橋梁安全性評價(jià)提供了一種量化分級標(biāo)準(zhǔn),值得進(jìn)一步推廣應(yīng)用研究。
關(guān)鍵詞:橋梁 ;去噪 ;安全性預(yù)警 ;相關(guān)向量機(jī) ;趨勢判斷
中圖分類號(hào):U446
文獻(xiàn)標(biāo)志碼:A
文章編號(hào): 1005- 8249 (2024) 05- 0162- 07
DOI:10. 19860/j.cnki.issn1005 - 8249.2024.05 .029
MA Yaohua
(China National Chemical Construction Investment Group Co. ,Ltd . , Beijing 102300 , China)
Abstract:In order to reasonably realize the safety early warning classification of operating bridges, based on the monitoring results of operating bridges, this paper first carries out data denoising to eliminate the noise information in the data and lay a foundation for subsequent analysis; Secondly, from three aspects of cumulative deformation sequence, velocity sequence and acceleration sequence, corresponding early warning criteria are constructed respectively to achieve multi-source information fusion of early warning classification of operational bridge safety and fully ensure the accuracy of classification results. The case analysis results show that the PSO-DVMD model can effectively eliminate the random noise in the bridge deformation data, and there are certain differences in the early warning levels of different monitoring points or monitoring items under different criteria. According to the adverse principle, the safety early warning level of the example bridge in this paper is comprehensively determined as Level II - Yellow, which belongs to the basic safety state. The follow-up monitoring should be continued, and the maintenance and reinforcement plan should be prepared. Through this study, it provides a quantitative grading standard for the safety evaluation of operating bridges, which is worthy of further popularization and application.
Keywords : bridges; denoising; security early warning; correlation vector machine; trend judgment
作者簡介: 馬耀華 (1973—) , 男,本科, 高級工程師 ,研 究方向: 土木工程。
收稿日期:2023- 05- 04
冀公網(wǎng)安備13011002000529 技術(shù)支持:數(shù)字河北 